BUFFERS

Ch 9-5

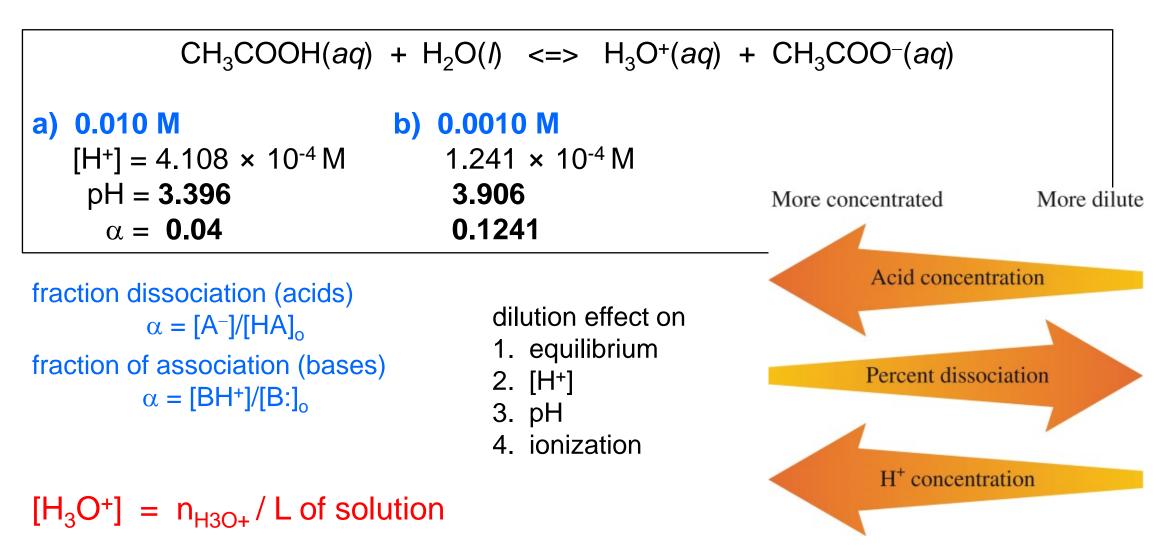
SWITCHED TO HARRIS TEXT

Third midterm exam on Monday, November 22

9-5 Buffers

Due to upcoming exam buffer and polyprotic acid homework will be posted this weekend.

Buffer handout will be posted on web, complete with solutions.


Weak Acid Dissociation - $K_a = x^2 / (F - x)$

EX 7. What is the pH of 0.010 and 0.0010 M acetic acid, $K_a = 1.76 \times 10^{-5}$, and its fraction of dissociation

 $\begin{array}{rcl} \mathsf{CH}_3\mathsf{COOH}(aq) \ + \ \mathsf{H}_2\mathsf{O}(l) \ <=> \ \ \mathsf{H}_3\mathsf{O}^+(aq) \ + \ \mathsf{CH}_3\mathsf{COO}^-(aq) \\ & & & & & \\ & & & & & 0 \end{array}$ С +*X* + *X* - X Е M – *x* X X $K_{a} = \frac{x^{2}}{M - x}$ quadratic: $x^{2} + K_{a} x - M K_{a} = 0$ b) 0.0010 a) 0.010 M fraction dissociation (acids) $[H^+] = 4.108 \times 10^{-4} M$ 1.241 × 10⁻⁴ M $\alpha = [A^-]/[HA]_o$ pH = **3.396** 3.906 fraction of association (bases) $\alpha = [BH^+]/[B^+]_{\alpha}$ **α** = **0.04** 0.1241

REVIEW FROM WEDNESDAY

Weak Acid Dissociation - $K_a = x^2 / (F - x)$

REVIEW FROM WEDNESDAY

Weak Base Dissociation - $K_{\rm b} = x^2 / (F - x)$

EX 6. What is the pH of 0.25 M solution of ammonia, $K_{\rm b} = 1.8 \times 10^{-5}$

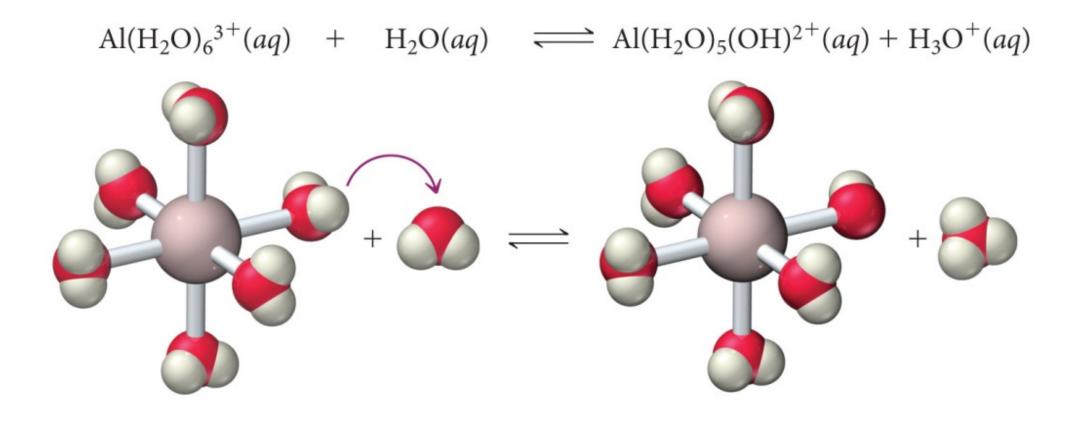
$$NH_{3}(aq) + H_{2}O(l) \iff OH^{-}(aq) + NH_{4}^{+}(aq)$$

$$M \qquad \qquad \sim 0 \qquad 0$$

$$-x \qquad +x \qquad +x \qquad +x$$

$$M-x \qquad \qquad x \qquad x$$

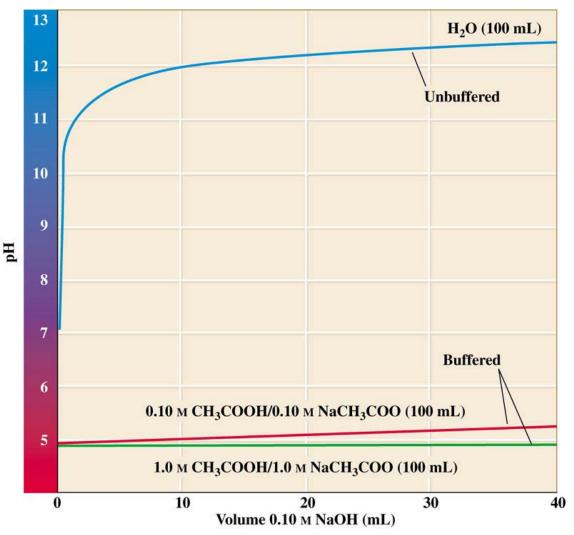
$$K_{b} = \frac{x^{2}}{M-x} \quad \text{quadratic: } x^{2} + K_{b} x - M K_{b} = 0$$


$$[OH^{-}] = 0.00211 \implies [H^{+}] = K_{w} / [OH^{-}] = 4.7811 \times 10^{-12} \text{ M}$$

$$\mathbf{pH} = \mathbf{11.32}$$

Acid/Base Properties of Salt Solutions

cation*	anion**	example	pH of solution					
from strong base	from strong acid	Mgl ₂ , KClO ₄	neutral					
	(conjugate base of)							
from strong base	from weak acid	KF, AgCN	basic					
	(conjugate base of)							
from weak base	from strong acid	NH ₄ Br	acidic					
(conjugate acid of)	(conjugate base of)							
from weak base	from weak acid	NH_4NO_2	acidic if $K_{\rm a} > K_{\rm b}$					
(conjugate acid of)	(conjugate base of)		basic if $K_{\rm b} > K_{\rm a}$					
			neutral if $K_{\rm a} = K_{\rm b}$					
highly charged metal ion	from strong acid	AI(NO ₃) ₃ ,	acidic					
(hydrated in water)	(conjugate base of)	$Cr(H_2O)_6^{3+}$						
*cation from strong base (Group I and II hydroxides, excluding Be) and silver:								
Li+, Na+, K+, Rb+, Cs+ Mg ²⁺ , Ca ^{2+,} Sr ^{2+.} Ba ²⁺ Ag ⁺								
**anion from strong acid: conjugate base of six of the seven common strong acids								
CI-, Br-, I- CIO_4^- , CIO_3^- , NO_3^- (not HSO_4^-) WHY? HSO_4^- is the conjugate base of a strong acid =>								
ineffective base but it does have an acidic proton => solutions are acidic								


Acidity of Aqueous Solutions of Metal Ions

Buffers

a solution that is able to withstand changes in pH (so that the pH is almost constant) upon addition of small amounts of acid or base - based upon the **common ion effect**

pH of human body 7.4 (37°C) – below 7 and above 7.8 death quickly follows. In the body the pH is maintained by carbonate, phosphate, and protein buffers

addition of NaOH so that solution is 0.05 M NaOH

Buffers – Common Ion Effect

EX 1. What is the pH of 1.0 F HF? ($K_a = 6.6 \times 10^{-4}$) and the fraction (or percent) dissociated

	$HF(aq) + H_2O(I) <=$	$> H_3O^+(aq)$	+ F⁻(<i>aq</i>)	
I	1.0	~ 0	0	
С	- X	+ <i>X</i>	+ <i>X</i>	
E	1.0 <i>- x</i>	X	X	
17	X^2 and dration $x^2 + (C)$	$\mathbf{C} = \mathbf{A} \mathbf{O} \mathbf{A}$	$(4 \circ)(0 \circ \dots 4 \circ 4)$	

 $K_{a} = \frac{x^{-1}}{1.0 - x} \quad \text{quadratic: } x^{2} + (6.6 \times 10^{-4})x - (1.0)(6.6 \times 10^{-4}) = 0$ $x = 0.0253 \implies \mathbf{pH} = 1.595 \implies \mathbf{1.60} \qquad \alpha = \mathbf{0.025} \text{ or } 2.5\% \text{ dissociated}$

Buffers – Common Ion Effect

EX 2. What is the pH of a solution which is 1.0 F HF and 1.0 F NaF ($K_a = 6.6 \times 10^{-4}$) and the fraction (or percent) dissociated?

	$NaF(s) \rightarrow Na^+(aq) + F^-(aq)$					
	HF(aq) ·	+ H ₂ O(<i>I</i>)	<=>	H ₃ O+(<i>aq</i>)	+ F [_] (<i>aq</i>)	
I	1.0			~ 0	1.0	
С	- X			+ <i>X</i>	+ <i>X</i>	
E	1.0 <i>– x</i>			X	1.0 + <i>x</i>	

$$K_{a} = \frac{x(1.0 + x)}{1.0 - x} \sim x \Rightarrow pH = 3.18$$

 $\alpha = 6.6 \times 10^{-4} \text{ or } 0.066\% \text{ dissociated}$

Buffers – Common Ion Effect, HCI Addition

EX 3. What is the pH of a solution which is 1.0 F in both HF and 1.0 NaF ($K_a = 6.6 \times 10^{-4}$) and 0.1 M in HCl

$$\begin{array}{rcl} \mathsf{NaF}(s) & \rightarrow & \mathsf{Na^+}(aq) \ + \ \mathsf{F^-}(aq) \\ \mathsf{HF}(aq) \ + \ \mathsf{H}_2\mathsf{O}(l) \ <=> \ \mathsf{H}_3\mathsf{O^+}(aq) \ + \ \mathsf{F^-}(aq) \\ \mathsf{1.0 + 0.1} & \sim 0 & \mathsf{1.0 - 0.1} \\ \mathsf{C} & \mathsf{-} x & \mathsf{+} x & \mathsf{+} x \\ \mathsf{E} & \mathsf{1.1 - x} & x & \mathsf{0.9 + x} \end{array} \xrightarrow{\mathsf{HC}} \begin{array}{r} \mathsf{HCI + NaF} \rightarrow \mathsf{NaCI + HF} \\ => \ \mathsf{H^+ + F^-} \rightarrow \mathsf{HF} \\ (\mathsf{net\ ionic}) \end{array}$$

$$K_{a} = \frac{x(0.9 + x)}{1.1 - x} \sim 0.9x / 1.1 => pH = 3.09$$

solution behave like a buffer, originally before HCl addition pH was 3.18

Buffers – Common Ion Effect, NaOH Addition

EX 4. What is the pH of a solution which is 1.0 F in both HF and 1.0 NaF ($K_a = 6.6 \times 10^{-4}$) and 0.1 M in NaOH

 $\begin{array}{rcl} {\sf NaF}(s) & \to & {\sf Na^+}(aq) \ + \ {\sf F^-}(aq) \\ {\sf HF}(aq) \ + \ {\sf H}_2{\sf O}({\it I}) \ <=> \ {\sf H}_3{\sf O^+}(aq) \ + \ {\sf F^-}(aq) \\ {\sf NaOH} \ + \ {\sf HF} \ \rightarrow \ {\sf NaF} \ + \ {\sf H}_2{\sf O} \\ {\sf I} \ 0.5 \ - \ {\sf O} \ 1.0 \ + \ 0.1 \ => \ {\sf OH^-} \ + \ {\sf HF} \ \rightarrow \ {\sf F^-} \ + \ {\sf H}_2{\sf O} \\ {\sf C} \ & -x \ & +x \ & +x \ & ({\sf net\ ionic}) \\ {\sf E} \ & 0.9 \ - x \ & x \ & 1.1 \ + x \end{array}$

$$K_{a} = \frac{x(1.1 + x)}{0.9 - x} \sim 1.1x/0.9 \implies pH = 3.27$$

solution behave like a buffer, originally before NaOH addition pH was 3.18

Working with Buffer Solutions

*note ratio of base form to acid form

based on a **weak acid** (HA) and its **conjugate base** (A⁻)
HA(aq) + H₂O(
$$\hbar$$
 <=> H₃O⁺(aq) + A⁻(aq)
Henderson-Hasselbalch
 $pH = pK_a + \log \frac{[A^-]_o}{[HA]_o}^*$

$$\frac{[H_3O^+][A^-]}{[HA]} \text{ or } pH = pK_a + \log \frac{[A^-]}{[HA]}$$
based on a **weak base** (B:) and its **conjugate acid** (BH⁺)
B:(aq) + H₂O(\hbar <=> OH⁻(aq) + BH⁺(aq)
Henderson-Hasselbalch
 $K_a = \frac{[H_3O^+][B:]}{[BH^+]} \text{ or } pH = pK_a + \log \frac{[B:]}{[BH^+]}$

$$pH = pK_a + \log \frac{[B]_o}{[BH^+]_o}^* \swarrow pK_a \text{ applies to}$$